Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Mar Drugs ; 20(7)2022 Jun 29.
Article in English | MEDLINE | ID: covidwho-1979311

ABSTRACT

Lectins are a unique group of nonimmune carbohydrate-binding proteins or glycoproteins that exhibit specific and reversible carbohydrate-binding activity in a non-catalytic manner. Lectins have diverse sources and are classified according to their origins, such as plant lectins, animal lectins, and fish lectins. Marine organisms including fish, crustaceans, and mollusks produce a myriad of lectins, including rhamnose binding lectins (RBL), fucose-binding lectins (FTL), mannose-binding lectin, galectins, galactose binding lectins, and C-type lectins. The widely used method of extracting lectins from marine samples is a simple two-step process employing a polar salt solution and purification by column chromatography. Lectins exert several immunomodulatory functions, including pathogen recognition, inflammatory reactions, participating in various hemocyte functions (e.g., agglutination), phagocytic reactions, among others. Lectins can also control cell proliferation, protein folding, RNA splicing, and trafficking of molecules. Due to their reported biological and pharmaceutical activities, lectins have attracted the attention of scientists and industries (i.e., food, biomedical, and pharmaceutical industries). Therefore, this review aims to update current information on lectins from marine organisms, their characterization, extraction, and biofunctionalities.


Subject(s)
Aquatic Organisms , Plant Lectins , Animals , Fishes , Galectins , Glycoproteins , Lectins, C-Type
2.
Chin Med ; 17(1): 88, 2022 Jul 27.
Article in English | MEDLINE | ID: covidwho-1962860

ABSTRACT

BACKGROUND: Since the outbreak of COVID-19 has resulted in over 313,000,000 confirmed cases of infection and over 5,500,000 deaths, substantial research work has been conducted to discover agents/ vaccines against COVID-19. Undesired adverse effects were observed in clinical practice and common vaccines do not protect the nasal tissue. An increasing volume of direct evidence based on clinical studies of traditional Chinese medicines (TCM) in the treatment of COVID-19 has been reported. However, the safe anti-inflammatory and anti-fibrotic proprietary Chinese medicines nasal spray, designated as Allergic Rhinitis Nose Drops (ARND), and its potential of re-purposing for suppressing viral infection via SARS-CoV-2 RBD (Delta)- angiotensin converting enzyme 2 (ACE2) binding have not been elucidated. PURPOSE: To characterize ARND as a potential SARS-CoV-2 entry inhibitor for its possible preventive application in anti-virus hygienic agent. METHODS: Network pharmacology analysis of ARND was adopted to asacertain gene targets which were commonly affected by COVID-19. The inhibitory effect of ARND on viral infection was determined by an in vitro pseudovirus assay. Furthermore, ARND was confirmed to have a strong binding affinity with ACE2 and SARS-CoV-2 spike-RBD (Delta) by ELISA. Finally, inflammatory and fibrotic cell models were used in conjunction in this study. RESULTS: The results suggested ARND not only inhibited pseudovirus infection and undermined the binding affinity between ACE2 and the Spike protein (Delta), but also attenuated the inflammatory response upon infection and may lead to a better prognosis with a lower risk of pulmonary fibrosis. The data in this study also provide a basis for further development of ARND as an antiviral hygienic product and further investigations on ARND in the live virus, in vivo and COVID-19 patients. ARND holds promise for use in the current COVID-19 outbreak as well as in future pandemics. CONCLUSION: ARND could be considered as a safe anti-SARS-CoV-2 agent with potential to prevent SARS-CoV-2 coronavirus infection.

3.
Int J Antimicrob Agents ; 56(3): 106118, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-704750

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is rapidly advancing across the globe despite drastic public and personal health measures. Antivirals and nutritional supplements have been proposed as potentially useful against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the novel coronavirus that causes COVID-19, but few have been clinically established. Lactoferrin (Lf) is a naturally occurring, non-toxic glycoprotein that is orally available as a nutritional supplement and has established in vitro antiviral efficacy against a wide range of viruses, including SARS-CoV, a closely related coronavirus to SARS-CoV-2. Furthermore, Lf possesses unique immunomodulatory and anti-inflammatory effects that may be especially relevant to the pathophysiology of severe COVID-19 cases. Here we review the underlying biological mechanisms of Lf as an antiviral and immune regulator, and propose its unique potential as a preventative and adjunct treatment for COVID-19. We hope that further research and development of Lf nutritional supplementation would establish its role for COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Immunologic Factors/therapeutic use , Lactoferrin/therapeutic use , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Betacoronavirus/drug effects , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Heparan Sulfate Proteoglycans/antagonists & inhibitors , Heparan Sulfate Proteoglycans/metabolism , Humans , Interferons/agonists , Interferons/biosynthesis , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , SARS-CoV-2 , Severity of Illness Index , Virus Internalization/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL